

Available online at www.sciencedirect.com

Tetrahedron 60 (2004) 1611–1616

Tetrahedron

Concise synthesis of pyrrolophenanthridine alkaloids using a Pd-mediated biaryl coupling reaction with regioselective C–H activation via the intramolecular coordination of the amine to Pd

Takashi Harayama,* Akihiro Hori, Hitoshi Abe and Yasuo Takeuchi

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan

Received 15 October 2003; accepted 29 November 2003

Abstract-The concise synthesis of Amaryllidaceae alkaloids, such as anhydrolycorinone, anhydrolycorin-7-one, assoanine, and oxoassoanine, which have a pyrrolophenanthridine skeleton, was achieved in moderate yield using the Pd-mediated biaryl coupling reaction of 1-(2-halobenzyl)-2,3-dihydroindole, which applied the regioselective C–H activation method with intramolecular coordination of the benzylamino group to Pd.

 $©$ 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The potentially useful pharmacological activities^{[1](#page-5-0)} and unique polycyclic structures of pyrrolophenanthridine (Amaryllidaceae) alkaloids (e.g., $1-8$) have led to recent interest in developing new synthetic methods for these alkaloids.[2,3](#page-5-0) Some of these attempts have involved an intramolecular aryl–aryl coupling reaction with a Pd reagent as the key step, including the dehydrogenation of two arenes with $Pd(OAc)_2$ in acetic acid,^{[4](#page-5-0)} a biaryl coupling reaction between a monobromoarene and an arene with a Pd reagent,[3,4a,5](#page-5-0) and the intramolecular coupling of a bis-haloarene with a Pd reagent.^{[6](#page-5-0)} Recently, we reported a method of synthesizing several benzo $[c]$ phenanthridine alkaloids using Pd-assisted aryl–aryl coupling reactions of 2-halo-N-naphthylbenzamides via the elimination of a hydrogen halide. 7 To examine the generality of this method, we tried to apply it to the synthesis of pyrrolophenanthridine (Amaryllidaceae) alkaloids, especially anhydrolycorin-7 one (3) ^{[1f](#page-5-0)} and oxoassoanine (4) , δ ⁸ which serve as advanced intermediates in the synthesis of other alkaloids.^{[4b,8b](#page-5-0)}

In this connection, Cai et al. reported that the reaction of 1-(2-bromobenzoyl)-2,3-dihydroindole (9a) using $Pd(OAc)_2$ and K_2CO_3 in DMA in the absence of a phosphine ligand afforded 3 in 55% yield.^{[5a,9](#page-5-0)} In our hands, the reaction of 1-(2-iodobenzoyl)-2,3-dihydroindole (9b), which is expected to be more reactive than 9a, under their reaction conditions did not produce 3, even in the presence of a phosphine ligand. Miki et al. reported that the

e-mail address: harayama@pharm.okayama-u.ac.jp

reaction of 1-(2-bromo-4,5-dimethoxybenzoyl)indole-2,3 dicarboxylate (10) with $Pd(PPh₃)₄$ gave no coupling product.[3](#page-5-0) Moreover, it has been reported that the biaryl coupling reaction of 1-(2-bromobenzyl)-2,3-diphenylindole (11) gave no coupling product,^{[4a](#page-5-0)} whereas the reaction of dimethyl 1-(2-bromobenzyl)indole-2,3-dicarboxylate (12) with $Pd(PPh₃)₄$ $Pd(PPh₃)₄$ $Pd(PPh₃)₄$ gave a coupling product (13).³ These results seem somewhat contradictory [\(Scheme 1](#page-1-0)).

Recently, we developed a method of synthesizing a new skeletal compound, naphthobenzazepine, by regioselective C–H activation using the intramolecular coordination of a benzylamine to $Pd¹¹$ $Pd¹¹$ $Pd¹¹$ We planned to apply this strategy to the synthesis of pyrrolophenanthridine (Amaryllidaceae) alkaloids, such as anhydrolycorine $(1)^{1f,12a}$ $(1)^{1f,12a}$ $(1)^{1f,12a}$ and assoanine (2) .^{[12b](#page-5-0)} Interconversion of 1 and 3 or 2 and 4 has already been accomplished by the air oxidation of 1 or 2, and the LiAlH₄ reduction of 3 or 4^{12} 4^{12} 4^{12} We envisioned that the intramolecular biaryl coupling reaction of 1-(2-halobenzyl)dihydroindole (A) using a Pd reagent would afford dihydropyrrolophenanthridine (C) directly, via an oxidative addition to $Pd(0)$ and coordination of the amine to $Pd(II)$, followed by the regioselective electrophilic substitution of Pd(II) at the C_7 position of the dihydroindole moiety [forming a four-membered palladacycle (B)]^{13,14} and the reductive elimination of $Pd(0)$, as shown in [Scheme 2.](#page-1-0) The details of the results are the subject of this paper.

2. Results and discussion

First, the Pd-catalyzed coupling reaction of 1-(2-bromobenzyl)-2,3-dihydroindole $(14)^{15}$ $(14)^{15}$ $(14)^{15}$ was examined as a preliminary study of the synthesis of these alkaloids

Keywords: Coodination; Palladium; Regioselectivity; Anhydrolycorine; Assoanine.

 $*$ Corresponding author. Tel./fax: $+81-86-2517963$;

 R^1 + R^2 = OCH₂O : hippadine (7) $R^1 = R^2 = OMe$: pratosine (8)

9a : R^1 + R^2 =OCH₂O, R^3 =O, X=Br 9b : R^1 + R^2 =OCH₂O, R^3 =O, X=I 14 : $R^1=R^2=H$, $R^3=H_2$, $X=Br$ 16a : R^1 + R^2 =OCH₂O, R^3 =H₂, X=Br 16b : R^1 + R^2 =OCH₂O, R^3 =H₂, X=I 17a : $R^1=R^2=OMe, R^3=H_2, X=Br$ 17b : $R^1=R^2=OMe, R^3=H_2, X=I$ 20: R^1 + R^2 =OCH₂O, R^3 =H₂, X=H 22: $R^1=R^2=OMe, R^3=H_2, X=H$

15

18a : R^1 + R^2 =OCH₂O, X=Br 18b : R^1 + R^2 =OCH₂O, X=I 19a : $R^1=R^2=OMe, X=Br$ 19b : $R^1=R^2=OMe, X=I$

10 : $R^1 = R^2 = OMe$, $R^3 = O$, $R = CO_2Me$, $X = Br$ 11 : $R^1=R^2=OMe$, $R^3=H_2$, $R=C_6H_5$, $X=Br$ 12 : $R^1=R^2=OMe$, $R^3=H_2$, $R=CO_2Me$, $X=Br$ **21a**: $R^1 + R^2 = OCH_2O$, $R^3 = H_2$, $R = X = H$ **21b**: $R^1 + R^2 = OCH_2O$, $R^3 = H_2$, R=H, X=Br 23: $R^1=R^2=OMe$, $R^3=H_2$, $R=X=H$

Scheme 1. Pyrrolophenanthridine alkaloids and related compounds.

Scheme 2. Strategy and proposed mechanism for synthesis of dihydropyrrolophenanthridine (C) from 1-(2-halobenzyl)dihydroindole (A).

(1–4). The reaction of 14 with $Pd(OAc)_2$, $P(o-tol)_3$, and K_2CO_3 in DMF under air gave pyrrolophenanthridone (15) in 35% yield, along with 1-benzyl-2,3-dihydroindole (13% yield)^{[16](#page-5-0)} and 1-benzylindole (17% yield).¹⁶ These results suggest that 15 was formed via a biaryl coupling reaction and concomitant oxidation, because 1-(2-iodobenzoyl)-2,3 dihydroindole gave 15 in only 8% yield^{[17](#page-5-0)} and alkaloids (1) and 3) readily undergo oxidation in air.[12](#page-5-0) Therefore, this strongly implies that the synthetic strategy shown in Scheme 2 is applicable to the synthesis of pyrrolophenanthridine (Amaryllidaceae) alkaloids.

Next, to study the synthesis of pyrrolophenanthridine

alkaloids, the starting materials (16a, 16b, and 17a) were prepared from dihydroindole and 2-bromobenzyl bromides $(18a^{18a}$ $(18a^{18a}$ $(18a^{18a}$ and $19a^{18b})$ $19a^{18b})$ or 2-iodobenzyl bromides $(18b)^{19a}$ $(18b)^{19a}$ $(18b)^{19a}$ in the presence of *i*-Pr₂NEt in dry CH₃CN in 86–91% yield. The starting material (17b) was prepared from dihydroindole and 2-iodobenzyl bromide $(19b)^{19b}$ $(19b)^{19b}$ $(19b)^{19b}$ in ether in 77% yield. The intramolecular coupling reactions of 1-(2 bromobenzyl)dihydroindoles (16a and 17a) using Pd were examined; the results are summarized in [Tables 1 and 2](#page-2-0). The reaction of 16a with Pd(OAc)₂, P(o -tol)₃, and K₂CO₃ in DMF under air gave anhydrolycorin-7-one (3) in 45% yield (run 1 in [Table 1\)](#page-2-0), $12a$ and the reaction in CH₃CN did not proceed (run 2 in [Table 1](#page-2-0)). By contrast, the reaction of 16a under an oxygen atmosphere, which was intended to accelerate the oxidation, afforded 3 in only 21% yield (run 3 in [Table 1](#page-2-0)). In this connection, Knölker et al. recently reported that the reaction of iodo-tetrahydroindole (24) with $Pd(PPh₃)₄$ in DMF under air gave 3 in 29% yield via a coupling reaction and oxidation.[2h](#page-5-0) The reaction of 16a in degassed DMF under an Ar atmosphere gave anhydrolycorine $(1)^{12a}$ $(1)^{12a}$ $(1)^{12a}$ and 3^{20a} 3^{20a} 3^{20a} in 37 and 15% yields, respectively, along with 20 and 21a (run 4 in [Table 1](#page-2-0)). The reaction of 16a using Ag_2CO_3 as a base produced only the oxidation product (21b) in 58% yield (run 7 in [Table 1](#page-2-0)). The reaction using i -Pr₂NEt and DBU as a base did not proceed (runs 8) and 9 in [Table 1](#page-2-0)). The reaction of 17a with $Pd(OAc)_2$, $P(o$ tol)₃, and K_2CO_3 in DMF under air gave oxoassoanine (4) ^{[12b](#page-5-0)} in 34% yield (run 1 in [Table 2\)](#page-2-0). The reaction of 17a in degassed DMF under an Ar atmosphere gave assoanine $(2)^{20b}$ $(2)^{20b}$ $(2)^{20b}$ and 4 in 28 and 13% yields, respectively, along with 22 and 23 (run 4 in [Table 2](#page-2-0)). The reaction of 16a and 17a using PCy_3 as a ligand gave the coupling products in better yield (run 5 in [Table 1](#page-2-0) and run 5 in [Table 2\)](#page-2-0).

To improve the yield, the biaryl coupling reaction of 1-(2 iodobenzyl)-2,3-dihydroindoles (16b and 17b), which are more reactive than bromo compounds, was examined. The results are summarized in [Tables 3 and 4.](#page-2-0) However, the yields were similar or lower than with bromo compounds. Unlike bromo compounds (16a and 17a), with iodo compounds (16b and 17b), Jeffery's conditions^{[21](#page-5-0)} gave the coupling products in higher yields (run 6 in [Table 3,](#page-2-0) and run 4 in [Table 4\)](#page-3-0).

In conclusion, the concise synthesis of pyrrolophenanthridine (Amaryllidaceae) alkaloids was accomplished by applying a strategy utilizing regioselective C–H activation via intramolecular coordination of the benzylamino group to Pd.[11](#page-5-0)

3. Experimental

3.1. General

Melting points were measured on a micro-melting point hotstage apparatus (Yanagimoto) and are uncorrected. IR spectra were recorded on a JASCO A-102 or JASCO FT/IR 350 spectrophotometer, and ¹H NMR spectra in deuteriochloroform were recorded on a JNM-MY 60 FT (60 MHz) or a Varian VXR-200 (200 MHz) spectrometer. NMR spectra data are reported in parts per million downfield from tetramethylsilane as an internal standard $(\delta 0.0)$ and

Run		Pd $(OAc)_2$ (mol%)	Ligand $(L/Pd)^b$	Base	Temp. $(^{\circ}C)$	Time (h)	Yield $(\%)$				
								3	20	21a	21 _b
	B	20	$P(o-tol)3(2)$	K_2CO_3	125	3	Trace	45	19	6	
2°	B	100	$P(o-tol)3(2)$	K_2CO_3	125	48	No reaction				
3 ^d	C	20	$P(o-tol)$ ₃ (2)	K_2CO_3	125	3		21	Trace	8	
$\overline{4}$	A	10	$P(o$ -tol) ₃ (2)	K_2CO_3	125	1.5	37	15	23	16	
5	А	10	$Cy_3P(2)$	K_2CO_3	125		50	6	17	8	
6	А	10	$t - Bu_3P(2)$	K_2CO_3	125	8	6	33	__	13	
7	B	20	$P(o-tol)3(2)$	Ag_2CO_3	125						58
8	А	10	$P(o-tol)3(2)$	i -Pr ₂ NEt	125	9	No reaction				
9	А	10	$P(o-tol)3(2)$	DBU	125	10	No reaction				
10 ^e	B	20		K_2CO_3	100	31					

Table 1. Results of biaryl coupling reaction of 1-[(6-bromo-1,3-benzodioxol-5-yl)methyl)]-2,3-dihydroindole (16a)^a

^a The reaction was carried out in degassed DMF under the conditions indicated (A:Ar, B:air, C:O₂) and 200 mol% of base was added.
^b The molar ratio of the ligand and Pd.
^c CH₃CN was used as a solvent.
^d The st

Table 2. Results of biaryl coupling reaction of 1-(2-bromo-4,5-dimethoxybenzyl)-2,3-dihydroindole (17a)^a

Run		Pd $(OAc)_2$ (mol%)	Ligand $(L/Pd)^b$	Temp. $(^{\circ}C)$	Time (h)	Yield $(\%)$			
								22	23
1 ^c	B	20	$P(o-tol)3(2)$	125	$\overline{\mathbf{a}}$	Trace	34	11	10
γ ^d ∠	R	10	$P(o-tol)3(2)$	125		Trace	25	Q	10
3^e	B	10	$P(o-tol)3(2)$	160		Trace	30	◠	17
4	А	10	$P(o$ -tol) ₃ (2)	140		28	13	28	18
5	A	10	$Cy_3P(2)$	125		45	13	26	

^a The reaction was carried out in degassed DMF under the conditions indicated (A:Ar, B:air) and 200 mol% of K₂CO₃ was added.
^b The molar ratio of the ligand and Pd.
^c The starting material (17a) was recovered in

the coupling constants are given in Hertz. MS spectra were obtained on a VG-70SE spectrometer. Column chromatography was carried out with Merck silica gel (230–400 mesh) and Wako activated alumina (300 mesh). All the experiments were carried out in an argon atmosphere, unless otherwise noted, and the extract was washed with brine, dried over anhydrous K_2CO_3 , and filtered, and the filtrate was concentrated to dryness under reduced pressure. $Pd(OAc)_2$ was treated with boiling benzene and the mixture

was filtered while hot. The hot filtrate was then concentrated to dryness to give purified $Pd(OAc)₂$.

3.2. Coupling reaction of 1-(2-bromobenzyl)-2,3 dihydroindole (14) with palladium reagent

To a solution of 14 (58 mg, 0.2 mmol) in DMF (1.5 ml) were added $Pd(OAc)_2$ (2.2 mg, 0.01 mmol), PPh_3 (5.3 mg, 0.02 mmol), and K_2CO_3 (55 mg, 395 mmol), and the

^a The reaction was carried out in degassed DMF under the conditions indicated (A:Ar, B:air) and 200 mol% of K₂CO₃ was added.
^b The molar ratio of the ligand and Pd.
^c 100 mol% of *n*-Bu₄NCl and 300 mol% of K₂

Run		Pd $(OAc)_2$ (mol%)	Ligand $(L/Pd)^b$	Temp. $(^{\circ}C)$	Time (h)	Yield $(\%)$			
							4	22	23
	B		$P(o-tol)3(2)$	125		Trace	35	16	13
2	А		$P(o$ -tol) ₃ (2)	125	2.5	28	15	25	15
3	А		$Cy_3P(2)$	125		24	10	33	$\overline{4}$
4°	А			115	4	43	₀	22	11
5^d	А			155	4	37		Ć	19

Table 4. Results of biaryl coupling reaction of 1-(2-iodo-4,5-dimethoxybenzyl)-2,3-dihydroindole (17b)^a

^a The reaction was carried out in degassed DMF under the conditions indicated (A:Ar, B:air) and 200 mol% of K₂CO3 was added.
^b The molar ratio of the ligand and Pd.
^c 100 mol% of *n*-Bu₄NCl and 300 mol% of K₂C

reaction mixture was stirred for 1.6 h at 125 $^{\circ}$ C. Then, the mixture was diluted with AcOEt and the precipitate was removed by filtration. The filtrate was washed with aqueous 5% NaOH solution and brine. The residue was dissolved in CHCl₃ and subjected to column chromatography through Al₂O₃. Elution with hexane–AcOEt (200:1) gave a mixture of 1-benzyl-2,3-dihydroindole^{[16](#page-5-0)} and 1-benzylindole.¹⁶ Elution with hexane–AcOEt $(1:1)$ gave 4,5-dihydro-7Hpyrrolo[3,2,1-de]phenanthridin-7-one (15) (19 mg, 35%). Moreover, a mixture of 1-benzyl-2,3-dihydroindole and 1-benzylindole was dissolved in $CHCl₃$ and subjected to column chromatography through silica gel. Elution with hexane gave 1-benzyl-2,3-dihydroindole (6 mg, 13%) and successive elution with the same solvent gave 1-benzylindole (9 mg, 17%).

3.2.1. 4,5-Dihydro-7H-pyrrolo[3,2,1-de]phenanthridin-**7-one (15).** Colorless needles, mp $168-170$ °C (CHCl₃-hexane), (lit.^{[17](#page-5-0)} 170–171 °C).

3.2.2. 1-Benzyl-2,3-dihydroindole. Pale yellow oil, (lit.[16](#page-5-0) oil). ¹H NMR (60 MHz, CDCl₃) δ : 2.88–3.44 (4H, m, C₂– H and C₃-H), 4.23 (2H, s, Ar–CH₂N), 6.45–7.33 (9H, m, $Ar-H$).

3.2.3. 1-Benzylindole. Colorless plates, mp $38.5-40^{\circ}$ C (Et₂O), (lit.^{[16](#page-5-0)} 43–44 °C). ¹H NMR (60 MHz, CDCl₃) δ : 5.33 (2H, s, Ar–CH₂N), 6.55 (1H, d, J=3.4 Hz, C₃–H), 7.04–7.33 (9H, m, Ar–H), 7.62 (1H, d, J=3.4 Hz, C₂-H).

3.3. General procedure for the synthesis of starting materials (16a, 16b and 17a)

To a solution of 2-halobenzyl bromides $(18a,^{18a} 18b,^{19b}$ $(18a,^{18a} 18b,^{19b}$ $(18a,^{18a} 18b,^{19b}$ $(18a,^{18a} 18b,^{19b}$ $(18a,^{18a} 18b,^{19b}$ and 19 a^{18b} a^{18b} a^{18b}) (3.00 mmol) in dry CH₃CN (8 ml) were added dihydroindole (425 mg, 3.60 mmol), $Et₄NI$ (116 mg, 0.45 mmol), and i -Pr₂NEt (2.1 ml, 12.3 mmol), and the reaction mixture was stirred for 30 min at 70° C. The mixture was diluted with AcOEt and the entire organic layer was washed with aqueous 5% NaOH solution and brine. The residue dissolved in $CHCl₃$ was subjected to column chromatography through silica gel.

3.3.1. 1-[(6-Bromo-1,3-benzodioxol-5-yl)methyl]-2,3 dihydroindole (16a). Elution with AcOEt–hexane (1:20) gave 16a (302 mg, 91%), colorless plates, mp 66–67 °C $(Et₂O)$. IR (KBr) cm⁻¹: 1245, 1040. ¹H NMR (200 MHz, CDCl₃) δ : 3.01 (2H, t, J=8.3 Hz, C₃-H), 3.41 (2H, t, $J=8.3$ Hz, C₂-H), 4.21 (2H, s, Ar–CH₂N), 5.95 (2H, s, $C_{2'}-H$), 6.43 (1H, dd, J=0.9, 7.8 Hz, C₇-H), 6.68 (1H, ddd, $J=0.9, 7.4, 7.8$ Hz, C₅-H), 6.96 (1H, s, C₄ $-H$), 7.03 (1H, s, C_{7} –H), 7.01–7.12 (2H, m, C₄–H and C₆–H). FAB-MS m/z : 331 (M)⁺, 333 (M+2)⁺. Anal. calcd for C₁₆H₁₄BrNO₂: C, 57.85; H, 4.25; N, 4.22. Found: C, 58.04; H, 4.42; N, 4.28.

3.3.2. 1-[(6-Iodo-1,3-benzodioxol-5-yl)methyl]-2,3-dihydroindole (16b). Elution with AcOEt–hexane (1:10) gave 16b (324 mg, 86%), colorless needles, mp 74.5– 75.5 °C (Et₂O). IR (KBr) cm⁻¹: 1250, 1040. ¹H NMR (200 MHz, CDCl₃) δ : 3.02 (2H, t, J=8.1 Hz, C₃-H), 3.40 $(2H, t, J=8.1 \text{ Hz}, C_2-H)$, 4.15 (2H, s, Ar–CH₂N), 5.96 (2H, s, C₂ $-H$), 6.43 (1H, dd, J=1.0, 8.0 Hz, C₇ $-H$), 6.68 (1H, ddd, J=1.0, 7.2, 7.6 Hz, C₅-H), 6.97 (1H, s, C₄ $-H$), 7.06 $(1H, dd, J=7.6, 8.0 Hz, C₆-H), 7.11 (1H, d, J=7.2 Hz, C₄-$ H), 7.28 (1H, s, C_{7'}-H). FAB-MS m/z : 379 (M)⁺. Anal. calcd for $C_{16}H_{14}BrNO_2$: C, 50.68; H, 3.72; N, 3.69. Found: C, 50.91; H, 3.97; N, 3.88.

3.3.3. 1-(2-Bromo-4,5-dimethoxybenzyl)-2,3-dihydroindole (17a). Elution with AcOEt–hexane (1:10) gave 17a (282 mg, 91%), colorless plates, mp $68-69$ °C (Et₂O). IR (KBr) cm⁻¹: 1260, 1030. ¹H NMR (200 MHz, CDCl₃) δ : 3.01 (2H, t, J=8.3 Hz, C₃-H), 3.38 (2H, t, J=8.3 Hz, C₂-H), 3.80 (3H, s, OCH3), 3.88 (3H, s, OCH3), 4.23 (2H, s, Ar–CH₂N), 6.51 (1H, dd, J=1.0, 7.8 Hz, C₇–H), 6.68 (1H, ddd, J=1.0, 7.2, 7.4 Hz, C₅-H), 7.00 (1H, s, C₆ $-H$), 7.05 (1H, s, C₃ $-H$), 7.07 (1H, dd, J=7.4, 7.8 Hz, C₆-H), 7.12 (1H, d, J=7.2 Hz, C₄-H). FAB-MS m/z: 347 (M)⁺, 349 $(M+2)^+$. Anal. calcd for C₁₆H₁₄BrNO₂: C, 58.63; H, 5.21; N, 4.02. Found: C, 58.53; H, 5.08; N, 3.92.

3.3.4. 1-(2-Iodo-4,5-dimethoxybenzyl)-2,3-dihydroindole (17b). To a solution of $19b^{19b}$ $19b^{19b}$ (1.43 g, 4.00 mmol) in ether (10 ml) was added dihydroindole (858 mg, 7.20 mmol) and the reaction mixture was stirred for 1.5 h at rt. After evaporation of solvent, the residue dissolved in $CHCl₃$ was subjected to column chromatography through silica gel. Elution with CHCl₃ gave $17b$ (1.21 g, 77%), colorless prisms, mp 93–94 °C (Et₂O). IR (KBr) cm⁻¹: 1255, 1025.
¹H NMR (200 MHz, CDCl₂) & 3.01 (2H t, *I*=8.2 Hz, C₂-¹H NMR (200 MHz, CDCl₃) δ : 3.01 (2H, t, J=8.2 Hz, C₃ – H), 3.40 (2H, t, J=8.2 Hz, C₂-H), 3.80 (3H, s, OCH₃), 3.88 $(3H, s, OCH_3)$, 4.20 $(2H, s, Ar-CH_2-N)$, 6.50 $(1H, dd,$ $J=7.8$ Hz, C₇-H), 6.70 (1H, dd, J=7.2, 7.4 Hz, C₅-H), 6.99 (1H, s, C_{6} –H), 7.09 (1H, dd, J=7.4, 7.8 Hz, C_{6} –H), 7.12 (1H, d, J=7.2 Hz, C₄-H), 7.27 (1H, s, C₃ $-H$). FAB-MS m/z : 395 (M)⁺. Anal. calcd for C₁₇H₁₈INO₂: C, 51.66; H, 4.59; N, 3.54. Found: C, 51.57; H, 4.75; N, 3.47.

3.4. General procedure for the coupling reaction of 1-halobenzyldihydroindole derivatives (16 and 17) in the presence of phosphine ligand

Each compound (16 or 17) (0.3 mmol) was reacted with $Pd(OAc)_{2}$, a phosphine ligand, and a base in dry DMF (8 ml) using Pd $(OAc)_{2}$ and the phosphine ligand in the ratios indicated in [Tables 1 and 2](#page-2-0), and 200 mol% of base for the times and temperatures indicated in the tables. Then, the reaction mixture was diluted with AcOEt and the precipitate was removed by filtration. The filtrate was washed with aqueous 5% NaOH solution and brine. The residue from 16 was dissolved in $CHCl₃$ and subjected to column chromatography through Al_2O_3 . Elution with hexane–AcOEt (50:1) gave 20 and elution with hexane–AcOEt (30:1) gave 21a. Moreover, elution with hexane–AcOEt (15:1) gave 1 and elution with AcOEt gave 3.

3.4.1. Anhydrolycorine (1). Pale yellow prisms, 110– 112.5 °C (EtOH), (lit.^{[20a](#page-5-0)} 108-111 °C). ¹H NMR (200 MHz, CDCl₃) δ : 3.02 (2H, t, J=7.9 Hz, C₄-H), 3.33 (2H, t, $J=7.9$ Hz, C_5-H), 4.07 (2H, s, C_7-H), 5.97 (2H, s, OCH₂O), 6.64 (1H, s, C₈-H), 6.76 (1H, dd, J=7.3, 7.3 Hz, C₂-H), 7.01 (1H, dd, J=1.0, 7.3 Hz, C₃-H), 7.16 $(H, s, C_{11}-H), 7.28$ (1H, dd, J=1.0, 7.3 Hz, C₁-H). Anal. calcd for $C_{16}H_{13}NO_2$: C, 76.48; H, 5.21; N, 5.57. Found: C, 76.49; H, 5.43; N, 5.35.

3.4.2. Anhydrolycorin-7-one (3). Pale brown needles, mp 236–237 °C (CHCl₃–MeOH), (lit.^{[20a](#page-5-0)} 232–234 °C). ¹H NMR (200 MHz, CDCl₃) δ : 3.33 (2H, t, J=8.3 Hz, C₄ – H), 4.38 (2H, t, $J=8.3$ Hz, C_5-H), 6.05 (2H, s, OCH₂O), 7.10 (1H, dd, $J=7.6$, 7.6 Hz, C₂-H), 7.20 (1H, dd, $J=1.2$, 7.6 Hz, C₃-H), 7.43 (1H, s, C₁₁-H), 7.64 (1H, dd, J=1.2, 7.6 Hz, C_1 -H), 7.82 (1H, s, C_8 -H). Anal. calcd for $C_{16}H_{11}NO_3$: C, 72.45; H, 4.18; N, 5.28. Found: C, 72.46; H, 4.38; N, 5.21.

3.4.3. 1-[(1,3-Benzodioxol-5-yl)methyl]-2,3-dihydro**indole (20).** Pale yellow oil, $(lit.^{19a}$ $(lit.^{19a}$ $(lit.^{19a}$ oil). ¹H NMR (200 MHz, CDCl₃) δ : 2.96 (2H, t, J=8.2 Hz, C₃-H), 3.29 $(2H, t, J=8.2 \text{ Hz}, C_2-H)$, 4.16 (2H, s, Ar–CH₂N), 5.95 (2H, s, C₂ $-H$), 6.51 (1H, d, J=7.6 Hz, Ar–H), 6.63–7.11 (6H, m, Ar–H). FAB-MS m/z : 253 (M)⁺.

3.4.4. 1-[(1,3-Benzodioxol-5-yl)methyl]indole (21a). Colorless needles, mp $82-83$ °C (petr. ether). IR (KBr) cm⁻¹: 1235, 1040. ¹H NMR (200 MHz, CDCl₃) δ : 5.22 (2H, s, Ar–CH₂N), 5.91 (2H, s, C₂ $-$ H), 6.53 (1H, d, $J=3.4$ Hz, C₃-H), 6.59 (1H, d, $J=1.4$ Hz, C₄ $-H$), 6.63 (1H, dd, J=1.4, 7.8 Hz, C₆ $-H$), 6.73 (1H, d, J=7.8 Hz, C_{7} – H), 7.10 (1H, ddd, J = 1.4, 6.8, 6.8 Hz, C₅ – H), 7.12 (1H, d, J=3.4 Hz, C₂-H), 7.18 (1H, ddd, J=1.4, 6.8, 8.2 Hz, C_6 –H), 7.30 (1H, dd, J=1.4, 8.2 Hz, C₇–H), 7.64 (1H, dd, J=1.4, 6.8 Hz, C₄-H). FAB-MS m/z : 251 (M)⁺. Anal. calcd for $C_{16}H_{13}NO_2$: C, 76.48; H, 5.21; N, 5.57. Found: C, 76.32; H, 5.45; N, 5.49.

3.4.5. 1-[(6-Bromo-1,3-benzodioxol-5-yl)methyl]indole (21b). The residue of run 7 in [Table 1](#page-2-0) was dissolved in $CHCl₃$ and subjected to column chromatography through silica gel. Elution with hexane–AcOEt (20:1) gave 21b, colorless needles, mp $124.5-125.5$ °C (hexane). IR

 (KBr) cm⁻¹: 1240, 1035. ¹H NMR (500 MHz, CDCl₃) δ : 5.29 (2H, s, Ar–CH₂–N), 5.89 (2H, s, C₂ $-$ H), 6.06 (1H, d, $J=3.5$ Hz, C₃-H), 6.58 (1H, d, J=3.5 Hz, C₂-H), 7.04 (1H, s, C₄ $-H$), 7.12 (1H, s, C₇ $-H$), 7.13 (1H, ddd, J=1.0, 7.0, 8.0 Hz, C₅-H), 7.19 (1H, ddd, J=1.0, 7.0, 8.0 Hz, C₆-H), 7.25 (1H, dd, $J=1.0$, 8.0 Hz, C₇-H), 7.66 (1H, dd, $J=1.0$, 8.0 Hz, C₄-H). FAB-MS m/z : 329 (M)⁺, 331 (M+2)⁺. Anal. calcd for $C_{16}H_{12}BrNO_2$: C, 58.26; H, 3.66; N, 4.24. Found: C, 58.27; H, 3.93; N, 4.11.

The residue from 17 was dissolved in CHCl₃ and subjected to column chromatography through silica gel. Elution with hexane–AcOEt (15:1) gave 22. Successive elution with the same solvent gave 23 and 2, and elution with AcOEt gave 4.

3.4.6. Assoanine (2). Pale yellow needles, mp165.5–168 $^{\circ}$ C (EtOH), (lit.^{[20b](#page-5-0)} 175–176 °C). ¹H NMR (200 MHz, CDCl₃) δ : 3.03 (2H, t, J=7.8 Hz, C₄-H), 3.34 (2H, t, J=7.8 Hz, C_5 –H), 3.90 (3H, s, OCH₃), 3.95 (3H, s, OCH₃), 4.12 (2H, s, C₇-H), 6.67 (1H, s, C₈-H), 6.78 (1H, dd, J=7.4, 7.6 Hz, C_2-H), 7.01 (1H, dd, J=1.0, 7.4 Hz, C₃-H), 7.19 (1H, s, C_{11} -H), 7.34 (1H, dd, J=1.0, 7.6 Hz, C₁-H). FAB-MS m/z: $268 \ (M+1)^{+}$.

3.4.7. Oxoassoanine (4). Colorless needles, mp 271– 273 °C (CHCl₃–MeOH), (lit.^{[20b](#page-5-0)} 270–271 °C). ¹H NMR (200 MHz, CDCl₃) δ : 3.43 (2H, t, J=8.3 Hz, C₄-H), 4.04 $(3H, s, OCH_3)$, 4.08 (3H, s, OCH₃), 4.49 (2H, t, J=8.3 Hz, C_5 –H), 7.20 (1H, dd, J=7.4, 7.6 Hz, C₂–H), 7.28 (1H, d, $J=1.0$, 7.4 Hz, C₃-H), 7.52 (1H, s, C₁₁-H), 7.80 (1H, d, $J=1.0$, 7.8 Hz, C₁-H), 7.93 (1H, s, C₈-H). Anal. calcd for $C_{17}H_{15}NO_3$: C, 72.58; H, 5.37; N, 4.98. Found: C, 72.43; H, 5.57; N, 5.03.

3.4.8. 1-(3,4-Dimethoxybenzyl)-2,3-dihydroindole (22). Colorless needles, mp $77-78$ °C (petr. ether). IR (CHCl₃) cm⁻¹: 1260, 1030. ¹H NMR (200 MHz, CDCl₃) δ: 2.97 (2H, t, $J=8.0$ Hz, C_3-H), 3.33 (2H, t, $J=8.0$ Hz, C_2-H), 3.86 $(3H, s, OCH₃), 3.88 (3H, s, OCH₃), 4.21 (2H, s, Ar–CH₂N),$ 6.62–7.14 (7H, m, Ar–H). FAB-MS m/z : 269 (M)⁺. Anal. calcd for $C_{16}H_{12}BrNO_2$: C, 75.81; H, 7.11; N, 5.20. Found: C, 75.78; H, 7.07; N, 5.19.

3.4.9. 1-(3,4-Dimethoxybenzyl)indole (23). Colorless needles, mp $61.5 - 62.5$ °C (hexane). IR (KBr) cm⁻¹: 1255, 1025. ¹H NMR (200 MHz, CDCl₃) δ: 3.77 (3H, s, OCH₃), 3.84 (3H, s, OCH3), 5.25 (2H, s, Ar–CH2N), 6.53 (1H, d, J=3.6 Hz, C₃-H), 6.66–6.70 (2H, m, C_{2'}-H and C_{6'}-H), 6.78 (1H, d, J=8.6 Hz, C₅ $-H$), 7.10 (1H, ddd, J=6.8, 7.2 Hz, C₅-H), 7.11 (1H, d, J=3.6 Hz, C₂-H), 7.18 (1H, ddd, J=1.4, 7.2, 8.0 Hz, C₆-H), 7.31 (1H, d, J=8.0 Hz, C₇-H), 7.64 (1H, dd, $J=1.4$, 6.8 Hz, C₄-H). FAB-MS m/z: 267 $(M)^+$. Anal. calcd for $C_{16}H_{12}BrNO_2$: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.28; H, 6.26; N, 5.20.

3.5. General procedure for the coupling reaction of 1-(2 iodobenzyl)dihydroindole derivatives (16b and 17b) under phosphine-free conditions (runs 6–8 in [Table 3,](#page-2-0) and runs 4 and 5 in [Table 4\)](#page-3-0)

The 1-(2-iodobenzyl)dihydroindole derivative (0.3 mmol) was reacted with 0.05 mol\% of Pd(OAc)₂, 100 mol% of $n-\text{Bu}_4\text{NC}$ l, and 300 mol% of K₂CO₃ or 550 mmol% of AcOK in dry DMF (4 ml) for the times and at temperature indicated in [Tables 3 and 4](#page-2-0). Then, the reaction mixture was diluted with ether and the precipitates were removed by filtration. Then, the reaction mixture was diluted with AcOEt and the precipitates were removed by filtration. The filtrate was washed with brine. The residue dissolved in CHCl3 was subjected to column chromatography and the products (2, 4, 22, and 23) shown in [Tables 3 and 4](#page-2-0) were separated by the methods mentioned before.

Acknowledgements

The authors are indebted to the SC-NMR Laboratory of Okayama University for the NMR spectral measurements.

References and notes

- 1. (a) Chattopadhyay, S. C.; Chattopadhyay, U.; Marthur, P. P.; Saini, K. S.; Ghosal, S. Planta Med. 1983, 49, 252–254. (b) Petti, G. R.; Gaddamidi, V.; Goswani, A.; Cragg, G. M. J. Nat. Prod. 1984, 47, 796–801. (c) Ghosal, S.; Lochan, R.; Ashutosh, .; Kumar, Y.; Srivastava, R. S. Phytochemistry 1985, 24, 1825–1828. (d) Zee-Cheng, R. K. Y.; Yan, S.-J.; Chen, C. C. J. Med. Chem. 1978, 21, 199–203. (e) Chen, C. C.; Zee-Cheng, R. K. Y. Heterocycles 1981, 15, 1275–1283. (f) Ghosal, S.; Rao, P. H.; Jaiswal, D. K.; Kumar, Y.; Frahm, A. W. Phytochemistry 1981, 20, 2003–2007.
- 2. (a) Hoshino, O. The alkaloids; Cordell, G. A., Ed.; Academic: New York, 1998; Vol. 51, pp 323–424. (b) Lewis, J. R. Nat. Prod. Rep. 2000, 17, 57–84. (c) Lewis, J. R. Nat. Prod. Rep. 1998, 15, 107–110. (d) Wolkenberg, S. E.; Boger, D. L. J. Org. Chem. 2002, 67, 7361–7364. (e) Boger, D. L.; Wolkenberg, S. E. J. Org. Chem. 2000, 65, 9120–9124. (f) Harrowven, D. C.; Lai, D.; Lucas, M. C. Synthesis 1999, 1300–1302, and references cited therein. (g) Padwa, A.; Brodney, M. A.; Liu, B.; Satake, K.; Wu, T. J. Org. Chem. 1999, 64, 3595–3607. (h) Knölker, H.-J.; Filali, S. Synlett 2003, 1752-1754.
- 3. Miki, Y.; Shirokoshi, H.; Matsushita, K. Tetrahedron Lett. 1999, 40, 4347–4348, and references cited therein.
- 4. (a) Black, D. C.; Keller, P. A.; Kumar, N. Tetrahedron 1993, 49, 151–164. (b) Black, D. C.; Keller, P. A.; Kumar, N. Tetrahedron Lett. 1989, 30, 5807–5808. (c) Itatani, T. Synthesis 1979, 151–152.
- 5. (a) Shao, H. W.; Cai, J. C. Chin. Chem. Lett. 1996, 7, 13–14. (b) Kozikowsky, A. P.; Ma, D. Tetrahedron Lett. 1991, 32, 3317–3320. (c) Garden, S. J.; Torres, J. C.; Pinto, A. C. J. Braz. Chem. Soc. 2000, 11, 441–446.
- 6. (a) Sakamoto, T.; Yasuhara, A.; Kondo, Y.; Yamanaka, H. Heterocycles 1993, 36, 2597–2600. (b) Grigg, R.; Teasdale, A.; Sridharan, V. Tetrahedron Lett. 1991, 32, 3859–3862.
- 7. (a) Harayama, T.; Shibaike, K. Heterocycles 1998, 49,

191–195. (b) Harayama, T.; Akiyama, T.; Akamatsu, H.; Kawano, K.; Abe, H.; Takeuchi, Y. Synthesis 2001, 444–450. (c) Harayama, T.; Akamatsu, H.; Okamura, K.; Miyagoe, T.; Akiyama, T.; Abe, H.; Takeuchi, Y. J. Chem. Soc., Perkin Trans. 1 2001, 523–528. (d) Harayama, T.; Akiyama, T.; Nakano, Y.; Nishioka, H.; Abe, H.; Takeuchi, Y. Chem. Pharm. Bull. 2002, 50, 519–522. (e) Harayama, T.; Akiyama, T.; Nakano, Y.; Shibaike, K.; Akamatsu, H.; Hori, A.; Abe, H.; Takeuchi, Y. Synthesis 2002, 237–241. (f) Harayama, T.; Hori, A.; Nakano, Y.; Akiyama, T.; Abe, H.; Takeuchi, Y. Heterocycles 2002, 58, 159–164. (g) Harayama, T.; Sato, T.; Nakano, Y.; Abe, H.; Takeuchi, Y. Heterocycles 2003, 59, 293–301.

- 8. (a) Llabres, J. M.; Viladoma, F.; Bastida, J.; Codina, C.; Rubiralta, M. Phytochemistry 1986, 25, 2637–2638. (b) Siddiqui, M. A.; Snieckus, V. Tetrahedron Lett. 1990, 31, 1523–1526.
- 9. Phosphine ligand is generally required for the Heck-type reaction of bromoarene¹⁰ and we could not reproduce Cai's results.^{5a}
- 10. (a) Heck, R. F. Organic reactions; Daube, W. G., Ed.; Wiley: New York, 1982; Vol. 27, pp 345–390. (b) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2–7.
- 11. Harayama, T.; Sato, T.; Hori, A.; Abe, H.; Takeuchi, Y. Synlett 2003, 1141–1144, and references cited therein.
- 12. (a) Cook, J. W.; Loudon, J. D.; McCloskey, P. J. Chem. Soc. 1954, 4176–4186. (b) Fales, H. F.; Giuffrida, L. D.; Wildman, W. C. J. Am. Chem. Soc. 1956, 78, 4145-4150.
- 13. Solé, D.; Valverde, L.; Solans, X.; Font-Bardía, M.; Bonjoch, J. J. Am. Chem. Soc. 2003, 125, 1587–1594.
- 14. (a) Cope, A. C.; Friedrich, E. C. J. Am. Chem. Soc. 1968, 90, 909–913. (b) Bruce, M. I. Angew. Chem., Int. Ed. Engl. 1977, 16, 73–86.
- 15. Rosa, A. M.; Lobo, A. M.; Branco, P. S.; Prabhaker, S.; Pereira, A. M. D. L. Tetrahedron 1997, 53, 269–284.
- 16. Kiguchi, T.; Kuninobu, N.; Takahashi, Y.; Yoshida, Y.; Naito, T.; Ninomiya, I. Synthesis 1989, 778–781.
- 17. Harayama, T.; Toko, H.; Hori, A.; Miyagoe, T.; Sato, T.; Nishioka, H.; Abe, H.; Takeuchi, Y. Heterocycles 2003, 61, 513–520.
- 18. (a) Barthel, W. F.; Alexander, B. H. J. Org. Chem. 1958, 23, 1012–1014. (b) Landais, Y.; Robin, J. P.; Lebrum, A. Tetrahedron 1991, 47, 3787–3804.
- 19. (a) Cossy, J.; Tresnard, L.; Pardo, D. G. Eur. J. Org. Chem. 1999, 1925–1933. (b) Pletnev, A. A.; Larock, R. C. J. Org. Chem. 2002, 67, 9428–9438.
- 20. (a) Hara, H.; Hoshino, O.; Umezawa, B. Tetrahedron Lett. 1972, 5031–5034. (b) Parnes, J. S.; Cartner, D. S.; Kurz, L. J.; Flippin, L. A. J. Org. Chem. 1994, 59, 3497–3499.
- 21. (a) Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287–1289. (b) Jeffery, T. Synthesis 1987, 70–71. (c) Jeffery, T. Tetrahedron 1996, 52, 10113–10130.

